
Fourier Transform.
Images as Waves
• The idea behind the Fourier transform like any other transform in Mathematics, is to take a 

problem in one domain and transform it into something easier  to work with. 

• The Fourier transform converts a signal f from the time domain to a frequency domain. The 

signal can be thought of as a sum of different sine and cosine functions at different frequencies.

• The jth Fourier coefficient of f indicates how strong the contribution of the sinusoidal waves with 

frequency j,  is to f.

• Images can be interpreted in wave terms analogously in 2-dimensional space.

• The FFT (fast Fourier Transform) is an algorithm which very quickly calculates the Fourier 

transform of a signal. In the case of images, we use its 2 dimensional version, FFT2 in MATLAB.

• The FFT2 of the kernel  (LATER).

Noise in Images 
• If we have additive white Gaussian noise in the image then

Anoisy = A + nE

• E is a matrix of size A of random numbers and n the noise factor . The noise affects the fine 

details more, like brightness, but less the general features. 

• Image as matrix: The last singular triplet of Anoisy will differ from those of A more than the first 

because the scalar n is small.

• The difference in the 5th and 20th triplets of the original image and the 0.05 noisy image can be 

seen by comparing Figure3 to Figure8 and Figure4 to Figure9.  The singular triplets 

corresponding to smaller singular  values are more affected by the noise damaged than those 

corresponding to the larger ones.

• Image as waves: The noise in the frequency domain affects component waves with the higher 

frequencies more, suggesting that denoising can be implemented by truncation.

• This, in turn, will reduce the definition of the image.

Denoising using TSVD
• Given an image corrupted by additive noise, we can filter the noise by taking the SVD of its 

matrix representation and replacing the image by one whose matrix representation is the sum of 

the first k singular triplets.

• Adenoised =                             where k ≤n

• Some care must be put into choosing a cutoff value, k.

• From results it could be seen that the larger the noise the lower the value of k needed to remove 

the noise.

• This makes sense because the noise is larger it would significantly corrupt larger singular 

triplets also, hence  the need to truncate them.
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Abstract
Images have an important role in scientific research and life in general. They 

help store data and memories. The great increase in image definition in 

recent years has made them larger in size, thus creating a challenge when it 

comes to computational aspects of images. The process of collecting and 

analyzing images must take into account the noise corrupting the specimens 

Noise in images may come from the measuring device, conditions of the 

surrounding environment or round off in calculations carried out in 

preprocessing steps. Small noise may cause unwanted variations in 

brightness and may be greatly amplified to the point of dominating the 

processed image. There are mathematical methods for removing noise from 

images and limiting their deleterious effects. The minimization of the loss of 

image detail in the process of limiting the effect of the noise is an important 

topic of research. In our project we use three methods for the restoration of a 

black and white image: truncated SVD and truncated Fourier transforms for 

denoising and a filtered deconvolution for deblurring and denoising. All three 

methods are regarded as matrix operatiions on matrices representing images.  

We investigate the effectiveness and limitations of the methods by testing with 

different levels of additive Gaussian noise in the images and with various 

Gaussian blurrings. The results show that these methods successfully 

removed noise at the price of having the image lose some definition. The 

higher the noise level, the more definition had to be removed from the 

denoised image. Future directions of this project will include studying how to 

keep as much detail as possible in restored images.

Singular Value Decomposition
From images to matrices
•Any rectangular image can be subdivided into m X n pixels. The larger the values 

of m and n, the higher the resolution. This naturally defines a matrix A.

•Each pixel location is assumed to have constant light intensity. The (i,j)th entry of A 

is the light intensity at the (i,j)th pixel. Thus A is a representation of the image.

•All matrix entries are nonnegative.

•The Singular Value Decomposition (SVD) of a matrix A  is a factorization

A = U Σ V* = σ1u1 * v1
T + σ2u2 * v2

T + … + σrur * vr
T

where Umxn and Vnxn are orthogonal matrices and Σ is a  diagonal matrix with 

nonzero decreasing diagonal entries, and r is the maximum number of linearly 

independent vectors.

•A singular triplet is ( σj, uj , vj ), where uj is the jth column of U, vj is the jth column 

of v and σ j the jth diagonal entry of Σ.   Note that σjuj * vj
T is an mXn image.

•The singular triplets of the matrix A contain information about the image . The first 

singular triplet A1 gives the outline of the image, as shown in Figure 1.

Figure 1. BW Image of the PBL building

Figure 8. Anoisy5, 5
th triplet, n= 0.05

Fisk University Case Western Reserve University

Figure 2. Outline the PBL building.    

• The subsequent singular images A2 … An hold information about finer details that 

help define the image, The singular values σj, weigh the contribution of each layer 

to the image, and that is why σ1 is dominant.  A20 and A50 can be seen below:

Figure 3. A5, 5
th scaled triplet Figure 4. A20, 20th scaled triplet

Figure9. Anoisy20, 20th triplet, n = 0.05

Figure5. Gaussian kernel Figure6. FFT2 of 

Gaussian kernel
Figure7. FFT2 of Figure.1

Figure10. Image with 

noise factor 0.05

Figure11. Image denoised

via TSVD with  k = 80

Figure12. Image with 

noise factor 0.2
Figure13. Image denoised

via TSVD  with k = 20

Denoising using FFT
• We convert the image to frequency domain. 

• The higher frequencies are usually at the borders of the FFT2 image; to truncate them we set these entries to zero

• The inverse FFT2 (IFFT2) takes us back to the time t domain.

• The higher the noise level, the more high frequencies we have to cut off, n in the captions above is the number 

of pixels set to zero. 

• When the noise level is high, it cannot totally be removed without removing much of the image, therefore a 

balance must be reached so that the image is still viable and noise is significantly reduced.

Figure14. Denoising in 

frequency domain the image 

of Figure10, n = 100. 

Figure17. Image in Figure 

12 denoised in frequency 

domain

Figure16. Denoising in 

frequency domain the image 

of Figure12, n = 200.

Figure15 . Image in Figure 

12 denoised in frequency 

domain

Figure19. Clear Image
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Convolution
Images can be degraded by blurring, smearing the light across pixels. We blur the PBL building  image in the  

frequency domain by an element-wise multiplication  of its Fourier transform with that of a Gaussian kernel shown in 

Fig. 5. The blurred image is shown in Figure 18

• Naively, we can deblur the image by inverting the blurring operation, that is by performing element-wise division  in 

frequency space. 

• The rounding of small numbers to 0 in finite precision arithmetic creates problems. To overcome this, a matrix of 

very low numbers (e.g., ε = 1e-6)  is added to the Fourier transform of the Gaussian image to prevent division by 

zero. With no noise this can give nice results, see Figure 19.

• The formula for computing the FFT of the deblurred image is 

• Blurry and noisy images can be deblurred and denoised as can be seen in Figure20. The value of the ε chosen 

depends on the noise level of the images. An example of what happens with a wrong choice of ε is shown in 

Figure21.

X  =Y./ (H.*H+ε1).* H
^     ^    ^   ^           ^

Figure21. Deblurred, 

image  with noise factor 

0.2  and  ε = 1e-3

Figure20. Deblurred

image  with noise factor 

0.2  and  ε = 1e-1

Figure18. Blurred Image
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