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Abstract

Images have an important role in scientific research and life in general. They
help store data and memories. The great increase in image definition in
recent years has made them larger in size, thus creating a challenge when it
comes to computational aspects of images. The process of collecting and
analyzing images must take into account the noise corrupting the specimens
Noise in images may come from the measuring device, conditions of the
surrounding environment or round off in calculations carried out in
preprocessing steps. Small noise may cause unwanted variations in
brightness and may be greatly amplified to the point of dominating the
processed image. There are mathematical methods for removing noise from
Images and limiting their deleterious effects. The minimization of the loss of
Image detall in the process of limiting the effect of the noise is an important
topic of research. In our project we use three methods for the restoration of a
black and white image: truncated SVD and truncated Fourier transforms for
denoising and a filtered deconvolution for deblurring and denoising. All three
methods are regarded as matrix operatiions on matrices representing images.
We investigate the effectiveness and limitations of the methods by testing with
different levels of additive Gaussian noise in the images and with various
Gaussian blurrings. The results show that these methods successfully
removed noise at the price of having the image lose some definition. The
higher the noise level, the more definition had to be removed from the
denoised image. Future directions of this project will include studying how to
keep as much detail as possible in restored images.

Singular Value Decomposition

From images to matrices

*Any rectangular image can be subdivided into m X n pixels. The larger the values

of m and n, the higher the resolution. This naturally defines a matrix A.

*Each pixel location is assumed to have constant light intensity. The (i,j)!" entry of A

is the light intensity at the (i,j)" pixel. Thus A is a representation of the image.

*All matrix entries are nonnegative.

*The Singular Value Decomposition (SVD) of a matrix A is a factorization
A=UZV*=0ou *v;T+0,Uu,*v, T+ ... +0oUu *V, T

where U, and V,,,, are orthogonal matrices and Z is a diagonal matrix with

nonzero decreasing diagonal entries, and r is the maximum number of linearly

Independent vectors.

*A singular triplet is ( oj, u;,v; ), where u;is the j" column of U, v; is the j"» column

of v.and o j the j™ diagonal entry of Z. Note that oju; *v,"is an mXn image.

*The singular triplets of the matrix A contain information about the image . The first

singular triplet A, gives the outline of the image, as shown in Figure 1.

Figure 1. BW Image of the PBL building Figure 2. Outline the PBL building.

* The subsequent singular images A, ... A, hold information about finer details that
help define the image, The singular values oj, weigh the contribution of each layer
to the image, and that is why o1 is dominant. A,, and Az, can be seen below:
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Figure 4. A,,, 20t scaled triplet
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Images as Waves

Fourier Transform.

The idea behind the Fourier transform like any other transform in Mathematics, is to take a
problem in one domain and transform it into something easier to work with.

The Fourier transform converts a signal f from the time domain to a frequency domain. The
signal can be thought of as a sum of different sine and cosine functions at different frequencies.
The jt Fourier coefficient of f indicates how strong the contribution of the sinusoidal waves with
frequency |, isto f.

Images can be interpreted in wave terms analogously in 2-dimensional space.

The FFT (fast Fourier Transform) is an algorithm which very quickly calculates the Fourier
transform of a signal. In the case of images, we use its 2 dimensional version, FFT2 in MATLAB.

Figurell. Image denoised
via TSVD with k=80

Figurel2. Image with
noise factor 0.2

FigurelO. Image with
noise factor 0.05

Figurel3. Image denoised
via TSVD with k =20

Denoising using FFT
« We convert the image to frequency domain.

« The higher frequencies are usually at the borders of the FFT2 image; to truncate them we set these entries to zero
« The inverse FFT2 (IFFT2) takes us back to the time t domain.

Figure6. FFT2 of

Figure5. Gaussian kernel _
Gaussian kernel

Figure7. FFT2 of Figure.1

The FFT2 of the kernel (LATER).

Figurel6. Denoising in
frequency domain the image
of Figurel2, n = 200.

Figurel5 . Image in Figure
12 denoised in frequency
domain

Figurel?. Image in Figure
12 denoised in frequency
domain

Figurel4. Denoising in
frequency domain the image
of FigurelO, n = 100.

Noise In Images

If we have additive white Gaussian noise in the image then _ _ _ _ _ _ _
A - A +?1E « The higher the noise level, the more high frequencies we have to cut off, n in the captions above is the number

noisy :
E is a matrix of size A of random numbers and n the noise factor . The noise affects the fine %E'Xelﬁ Set t_o zlero.l < high. i v b 4 with _ Hof the i heref
details more, like brightness, but less the general features. en the noise level is high, it canno.t totay_ e remove wit ou_t removing much o the image, therefore a
balance must be reached so that the image is still viable and noise is significantly reduced.

Imaae as matrix: The last sinaular trinlet of 4
Convolution

Images can be degraded by blurring, smearing the light across pixels. We blur the PBL building image in the
frequency domain by an element-wise multiplication of its Fourier transform with that of a Gaussian kernel shown in
Fig. 5. The blurred image is shown in Figure 18
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5t triplet, n= 0.05

noisy5:

The difference in the 5" and 20t triplets of the original image and the 0.05 noisy image can be
seen by comparing Figure3 to Figure8 and Figure4 to Figure9. The singular triplets
corresponding to smaller singular values are more affected by the noise damaged than those
corresponding to the larger ones.

Figure20. Deblurred
Image with noise factor
0.2 and g =1e-1

Figure2l. Deblurred,
Image with noise factor
0.2 and & =1e-3

Figurel8. Blurred Image

Figurel9. Clear Image

Image as waves: The noise in the frequency domain affects component waves with the higher - Naively, we can deblur the image by inverting the blurring operation, that is by performing element-wise division in
frequencies more, suggesting that denoising can be implemented by truncation. frequency space.
This, in turn, will reduce the definition of the image. « The rounding of small numbers to O in finite precision arithmetic creates problems. To overcome this, a matrix of

very low numbers (e.g., € = 1e-6) is added to the Fourier transform of the Gaussian image to prevent division by
zero. With no noise this can give nice results, see Figure 19.
Den 0 | S | N g US | N g TSVD « The formula for computing the FFT of the deblurred image is
Given an image corrupted by additive noise, we can filter the noise by taking the SVD of its
maitrix representation and replacing the image by one whose matrix representation is the sum of

the first k singular triplets. k
;
Adenoised = ZGJUJ'VJ'

j=1
Some care must be put into choosing a cutoff value, k.

From results it could be seen that the larger the noise the lower the value of k needed to remove
the noise.

This makes sense because the noise is larger it would significantly corrupt larger singular
triplets also, hence the need to truncate them.

X, =Y./ (H*H+el).* H

where k =n « Blurry and noisy images can be deblurred and denoised as can be seen in Figure20. The value of the € chosen

depends on the noise level of the images. An example of what happens with a wrong choice of € is shown in
Figure2l.
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